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Abstract—The report contains the final project details of the
CS 454 (Introduction to Machine Learning) course supervised by
Prof. Ethem Alpaydın from Ozyegin University. The final project
objective is to classify brain tumors given the various brain MRI
images using VGG16 Convolutional Neural Network (CNN). To
extend the problem with the knowledge that is learned in the
course, an autoencoder logic is also implemented into the system
to decrease the training time of the model.

Index Terms—machine learning, deep learning, classification,
brain tumors, autoencoder

I. INTRODUCTION

A brain tumor is a collection, or mass, of abnormal cells in
the brain. The skull, which encloses the brain, is very rigid and
any growth inside such a restricted space can cause problems.
Brain tumors can be cancerous (malignant) or noncancerous
(benign). When benign or malignant tumors grow, they can
cause the pressure inside the skull to increase. This can cause
brain damage, and it can be life-threatening.

A Brain tumor is considered one of the most aggressive
diseases, among children and adults. Brain tumors account
for 85% to 90% of all primary Central Nervous System(CNS)
tumors. Every year, around 11,700 people are diagnosed with
brain tumors. The 5-year survival rate for people with a
cancerous brain or CNS tumor is approximately 34% for men
and 36% for women.

Brain Tumors are classified as; Benign Tumors, Malignant
Tumors, Pituitary Tumors, etc. Proper treatment, planning, and
accurate diagnostics should be implemented to improve the life
expectancy of the patients. The best technique to detect brain
tumors is Magnetic Resonance Imaging (MRI). A huge amount
of image data is generated through the scans. These images
are examined by the radiologist. A manual examination can be
error-prone due to the level of complexities involved in brain
tumors and their properties. Application of automated classifi-
cation techniques using Machine Learning(ML) and Artificial
Intelligence(AI)has consistently shown higher accuracy than
manual classification. Hence, proposing a system performing
detection and classification by using Deep Learning Algo-
rithms using Convolution Neural Networks (CNN), Artificial
Neural Networks (ANN), and transfer learning (TL) would be
helpful to doctors all around the world.

Early detection and classification of brain tumors is an
important research domain in the field of medical imaging and
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accordingly helps in selecting the most convenient treatment
method to save patients’ life therefore

In this study, a VGG16 Convolutional Neural Network
(CNN) model is implemented to classify the brain tumors
given the MRI images of different brains with and without
tumors. To accelerate the training process by learning the
representations of the compressed images, an autoencoder is
integrated into the system, and its performance is measured
by comparing the accuracy and training time of the models
that use normal images, and images compressed with the
autoencoder. The aim of this implementation is to minimize
both the loss and the training time.

Section II explains the utilized data, details of the VGG16,
the autoencoder structure, and the packages that are used in the
software. The problem statement and the proposed solution can
be found in sections III and V. For the literature analysis about
the medical usage of machine learning, section VI should be
read. Finally, the conclusion of the overall project is in section
VII.

II. BACKGROUND

A. Data
In the project, Brain Tumor MRI Dataset1 is fetched from

Kaggle for the implementation. The data contains 7022 images
of human brain MRI images which are classified into 4 classes
and are split into train and test parts by default.

The labels of the classes are as follows;
• Glioma: A Glioma is a type of tumor that starts in the

glial cells of the brain or the spine. Gliomas comprise
about 30 percent of all brain tumors and central nervous
system tumors, and 80 percent of all malignant brain
tumors [1].

• Meningioma: A Meningioma is a primary central nervous
system (CNS) tumor. This means it begins in the brain or
spinal cord. Overall, meningiomas are the most common
type of primary brain tumor [2].

• Pituitary: Pituitary tumors are unusual growths that de-
velop in the pituitary gland. This gland is an organ about
the size of a pea. It’s located behind the nose at the base
of the brain. Some of these tumors cause the pituitary
gland to make too much of certain hormones that control
important body functions [3].

• No Tumor: This label represents there is no tumor!

1Brain Tumor MRI Dataset, Kaggle, 2020

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
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Fig. 1: Data distributions by counts

Fig. 1 shows the distribution of the data over the train and
test sets. The distribution of both the train and test data is
close to uniform distribution. The balanced structure of the
data prevents the model from overfitting and provides close
chances to each class label to be predicted.

In terms of the train/test split of the data, the distribution
of the class labels are close to uniform distribution just like in
the general overview of the data (Appendix 1). The train/test
split ratio is 80:20 as shown in the Fig. 2.
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Fig. 2: Train/Test Split Percentage of the Data

The MRI images have different perspectives of the brain
that are the top view, left/right side views, back view, and
front view of the head. An example of the MRI images
and corresponding tumor types are given in Fig. 3. The
performance of the model with The realistic and diverse side
of this data

B. Algorithms
1) VGG16: VGG16 is a convolutional neural network

model trained on the ImageNet dataset. The ”VGG” in VGG16
stands for ”Visual Geometry Group”, which is the research
group at Oxford University where the model was developed.
The ”16” refers to the number of layers in the model.

Fig. 3: Brain MRI images

The model was introduced in the 2014 paper [4]. It was
trained on the ImageNet dataset, which is a large dataset of
images labeled with 1000 different object categories.

VGG16 is a feedforward network that consists of 16
convolutional layers and 3 fully-connected layers. It was
one of the first very deep convolutional networks, achieving
record-breaking results on the ImageNet classification task.
The model architecture is simple and straightforward, and it
has been widely used as a benchmark for image classification
tasks.

Fig. 4: VGG16 Architecture

2) Autoencoder: An autoencoder is a component of a
neural network that is responsible for reducing the input data
into a lower-dimensional representation, or encoding. This
encoding is typically used to compress the input data so that
it can be more easily processed by the rest of the network.

The autoencoder architectures vary widely, but they typ-
ically involve a combination of linear and non-linear trans-
formations of the input data. For example, an autoencoder
might consist of a series of convolutional layers that extract
features from the input data, followed by one or more fully-
connected layers that reduce the dimensionality of the feature
maps. Fig. 5 shows a general structure of an autoencoder.

One common application of autoencoders is in the field of
natural language processing, where they are used to convert
words or sentences into fixed-length vector representations.
These vector representations can then be used as input to other



neural networks models, such as language translation models
or text classification models.

Other applications of autoencoders include image compres-
sion, anomaly detection, and generative modeling.

Fig. 5: Autoencoder Architecture

C. Packages

1) Scikit-learn: Scikit-learn is a powerful open-source
library for machine learning and data science in Python. It
offers a wide range of modeling and analyzing data, including
linear and logistic regression, support vector machines,
decision trees, random forests, and many more. Scikit-learn
is built on top of NumPy and SciPy, and integrates well with
other scientific libraries such as Pandas and Matplotlib. In
our project, it is used to implement k-Fold Cross Validation,
and to measure the precision, recall, accuracy, and f1 scores
of the classifications.

2) Numpy: Numpy is a fundamental library for scientific
computing in Python, and is widely used in the field of data
science and machine learning. It is used to work with arrays
and matrices, and is designed to make it easy to perform
mathematical and statistical calculations on large and complex
datasets. Numpy is built on top of low-level C and Fortran
libraries, and is optimized for performance, making it much
faster than standard Python lists and arrays for many types of
calculations. In the project, Numpy is used to perform array
and matrix calculations of the images, and to prepare data to
appropriate format for the VGG16 model.

3) Matplotlib: Matplotlib is a Python library that is widely
used for data science and machine learning for creating
static, animated, and interactive plots and visualizations. It is
built on top of the NumPy library and integrates well with
other scientific libraries such as Pandas and Scikit-learn. In
the project, Matplotlib is used for both data analysis and
visualization of results. This library is particularly helpful
when working with complex datasets, as it allows to create
various types of plots, including line plots, scatter plots,
histograms, box plots, and heatmaps.

4) TensorFlow: TensorFlow is an open-source library for
multiple machine learning, deep learning and other statistical
and predictive tasks. The framework includes sets of both
high-level and low-level APIs and can work with either CPUs
or GPUs (for higher performance).

5) Keras: Keras is a high-level deep learning API
developed by Google that contains various built-in utilities
to import and use with Python easily. It also allows users to
design their own neural network structures with ready-to-use
neural layers, cost functions, activation functions, etc. It
works on top of the TensorFlow library and is capable of
using TensorFlow’s utilities. Keras is used to implement the
VGG16 model and the autoencoder.

III. PROBLEM STATEMENT

Image classification is important for medical diseases be-
cause it can assist doctors and medical researchers in identify-
ing and diagnosing a wide range of conditions. Medical images
such as X-rays, CT scans, and MRI scans are often used to
detect and diagnose diseases and injuries, but the sheer volume
of images can be overwhelming for human experts to analyze,
especially when looking for specific features or patterns.

By using image classification algorithms, medical images
can be analyzed quickly and accurately, allowing doctors
and researchers to identify potential cases of a disease or
condition, track the progression of a condition over time, and
monitor the effectiveness of treatments. Additionally, image
classification can be used in computer-aided diagnosis (CAD)
systems to assist radiologists and other medical professionals
in interpreting medical images and making more accurate
diagnoses.

Furthermore, image classification can be trained to detect
early signs of certain diseases, and can be a powerful tool in
detecting diseases or abnormalities that are difficult for human
experts to spot. Automated classification can also be applied to
pathological images, with the aim of detecting and diagnosing
cancer in an early stage, giving a patient a better chance of
survival.

Also, being able to classify medical images in an automatic
way can help to reduce human errors that could result in
misdiagnosis and therefore contribute to making medical care
more efficient and accurate.

In this project, 7022 images of human brain MRI images
are going to be used for training a model which classifies the
images according to their class names, and the performance
of the model will be tested to show how accurately the model
performs.

Additionally, the aim is to extract some important features
from the images using an autoencoder. The images will be
given to the CNN in two different forms; I) normal form, II)
output of the autoencoder form. The comparison of the two
cases will show how can autoencoders be utilized in such type
of a study, and what are its pros and cons.



Finally, trained models will be evaluated by looking at some
important metrics such as accuracy score, and training time.

IV. SOLUTION APPROACHES

VGG16 model is used as the deep learning model to
categorize brain tumors that are glioma, meningioma, pituitary,
and no tumor. The structure of our deep learning model
consists of 7 parts. After loading the dataset which is already
splitted training and test subsets, every image in the dataset is
resized to 128x128 size with 3 channels and normalized.

K-fold cross-validation technique is used for making hyper-
parameter tuning in VGG16 model. It is a model validation
method that can be used to tune the hyperparameters of a
VGG16 model, such as the number of epochs, batch size,
optimizer, and learning rate. We used k=5 fold and 24 com-
binations of number of epochs, batch size, optimizer, learning
rate for finding best hyperparameters. In every combination,
all fold’s average accuracy and loss took important role for
selecting the best model. So, best model’s epoch, batch size,
optimizer and learning rate are respectively achieved 8, 30,
Adam and 0.0001. The model uses sparse categorical crossen-
tropy as the loss function. Then, best model is evaluated with
test dataset.

Moreover, accuracy, precision, recall, and the F1-score are
used metrics to evaluate the performance of a model on a test
dataset. Accuracy calculated as the ratio of correct predictions
to the total number of predictions (1). Precision, also known
as positive predictive value, measures the proportion of true
positive predictions out of all positive predictions made by the
model (2). Recall, sensitivity or true positive rate, measures the
proportion of positive samples that were correctly identified by
the model (3). F1-Score is a measure that combines precision
and recall (4).

Accuracy =
Number of correct predictions
Total number of predictions

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision×Recall

Precision+Recall
(4)

Moreover, dimension reduction technique is used to reduce
the complexity of data by removing redundant or irrelevant
information. Autoencoding, which is a type of neural network
architecture used for unsupervised learning, is implemented
for dimension reduction operation. The designed autoencoder
architecture uses convolutional layers and pooling layers to
perform dimensionality reduction, also known as encoding,
and uses transposed convolutional layers and upsampling
layers to perform decoding, to reconstruct an image from the
lower-dimensional representation. Every image in the datasets
encoded with this architecture for the second case of the

Fig. 6: Designed Autoencoder Architecture

classifications to be comparable with normal image input case.
The autoencoder designed is shown in Fig. 6.

Encoded images is trained in VGG16 model to specify brain
tumors. Then, encoded images evaluated with performance
metrics on a encoded test dataset. Finally, only VGG16 model
and VGG16 with autoencoder model are compared via looking
execution time and confusion matrices.

V. EXPERIMENTS AND RESULTS

A. Experiment Environment
For the collaboration of the team in the coding part, Google

Colab2 platform is used with free version. A Python notebook
is created and authors are coded different parts of the project
together. After the coding is done, training and test processes
are done in the same Google Colab environment.

2Official website of Google Colab

https://colab.research.google.com/


TABLE I: Results comparison

Normal Image Inputs Autoencoded Image Inpus

Label Precision Recall F1-Score Precision Recall F1-Score

Glioma 1.00 0.83 0.91 0.91 0.98 0.95

Meningioma 0.82 0.99 0.90 0.98 0.91 0.94

Notumor 1.00 1.00 1.00 1.00 1.00 1.00

Pituitary 1.00 0.94 0.97 0.99 0.98 0.99

Macro Avg 0.95 0.94 0.94 0.97 0.97 0.97

Accuracy 0.95 0.97

B. Results
The images that are passed into the autoencoder for 10

epochs got more blurry after taken from the decoder. The total
processing time of the autoencoder for 10 epochs is 62s. The
input and output of the autoencoder model can be viewed in
Appendix 4.

The best VGG16 model selected after the validation process
(epochs: 8, batch size: 30, optimizer: Adam, learning rate:
0.0001) is trained with both normal image data without
preprocessing, and the image data that is the output of the
autoencoder. After training is finished in these two cases, the
average loss and sparse categorical accuracy results are given
in Table II.

TABLE II: Loss & Accuracy of the Training Processes

Input Average Loss Average Sparse
Categorical Accuracy

Training with
Normal Image Data 0.142 0.947

Training with
Autoencoded Image

Data
0.149 0.944

The model history for the both cases that contain loss and
accuracy values can be found in Appendix 2 and 3.

The training time of the model with normal image inputs
is 142.8s with the configurations of the regular version of
the Google Colab computer. The training time is shorter in
the autoencoded image inputs case expected, which is 90.4s.
Since the autoencoder’s process time takes 62s, the second
case can be considered as 152.4s. However, to prevent this,
image data can be passed to an autoencoder when it is first
arrived in real-life cases to be prepared to get passed in the
VGG16 model when the time has come.

The performance comparison of the two cases with the
metrics that are explained in Section IV is given in Table I.
In the table, macro average value is averaging the unweighted
mean per label in terms of the precision, recall, and f1-score.
It can be clearly seen that, when the images are passed to
autoencoder before being fed to the VGG16 model, the result
gets better in terms of the accuracy and other metrics. In

this study’s case, normal accuracy, 0.95, is passed with the
accuracy of 0.97.

VI. RELATED WORKS

Much work has been done on image classification on the
Brain Tumor MRI Dataset. Some of these reached serious
accuracy, while others remained low. The following table
shows the accuracy values obtained by the previous studies
on this dataset.

TABLE III: Previous Studies And Accuracy Scores

Pretrained Model Accuracy Score
ResNet 0.947

VGG-16 0.950
Custom 0.972
Custom 0.968
VGG-16 0.957

As it can be seen from the table, although the data set is the
same, accuracy score changes based on the network used for
classification task. Furthermore, Although the same pretrained
model (VGG-16) is used on the same data set, the accuracy
scores might differ. There could be multiple reasons for this.
Data augmentation techniques, hyper parameters selected for
the model are other reasons that affect the accuracy score.

Additionally, image classification is highly used in the
medical field. Below are some of the academic works which
uses image classification in the medical field.

In the paper [5], This paper presents a new approach to
deep learning, called synergic deep learning (SDL), that aims
to address the challenges of intra-class variation and inter-
class similarity in medical image classification. The method
involves using multiple deep convolutional neural networks
(DCNNs) at the same time and allowing them to learn from
each other. The representations learned by each pair of DCNNs
are concatenated and used as the input to a synergic network
that predicts whether the images belong to the same class.
If one DCNN makes a correct classification, but the other
makes an error, this synergic error serves as a powerful force
to update the model. The approach is trained end-to-end using
both classification errors from the DCNNs and synergic errors



from each pair of DCNNs. Results on several datasets indicate
that the proposed SDL model outperforms the state-of-the-art
in medical image classification tasks.

In the paper [6], a specialized Convolutional Neural Net-
work (CNN) that utilizes a shallow convolution layer has been
developed to identify interstitial lung disease (ILD) in lung
image patches. As opposed to traditional feature descriptors
that can be complex and specific to certain domains, our CNN
framework can automatically learn the relevant image features
from lung image patches that are optimal for classification.
Additionally, this CNN architecture can be adapted for other
medical image classification or texture classification tasks.

In the paper [7], authors have created and made publicly
accessible a dataset of 7909 breast cancer histopathology
images obtained from 82 patients. This dataset includes both
benign and malignant images and the goal is to classify them
into two classes using automated methods. This could serve
as a valuable tool for clinicians in diagnosing breast cancer.
They have also provided preliminary results using current
image classification systems and found accuracy ranging from
80-85%, indicating that there is still room for improvement.
Through making this dataset and evaluation protocol available
to the scientific community, they aim to bring together re-
searchers from both the medical and machine learning fields
to work towards this important clinical application.

In the paper [8], authors investigate the use of convolutional
neural networks (CNNs) for classifying pneumonia on a chest
X-ray dataset. They evaluate three different techniques in our
experiments: (1) a linear support vector machine classifier
with local rotation and orientation-free features, (2) transfer
learning on the VGG16 and InceptionV3 CNN models, and (3)
a capsule network trained from scratch. All three techniques
were tested with data augmentation as a preprocessing method.
Their results indicate that data augmentation is an effective
way to improve performance for all three algorithms. Addi-
tionally, they found that transfer learning is more effective for
classification on small datasets compared to the support vector
machine with ORB robust independent elementary features
and capsule network.

In the paper [9], authors propose a novel consistency-based
method that utilizes unlabeled data to improve medical image
classification. They leverage a self-ensembling model and
consistency targets to exploit unlabeled data by encouraging
prediction consistency under perturbations. Additionally, they
introduce a sample relation consistency (SRC) paradigm to
consider the relationships among different samples, which
reflects the way human diagnose medical images. SRC is su-
perior to existing consistency-based methods that only enforce
consistency of individual predictions, as it encourages the
model to explore extra semantic information from unlabeled
data by enforcing consistency of semantic relations among
samples under perturbations. They conduct experiments to
evaluate our method on two public benchmark datasets: skin
lesion diagnosis with the ISIC 2018 challenge and thorax
disease classification with the ChestX-ray14 dataset. Their
method outperforms many state-of-the-art semi-supervised

learning methods in both single-label and multi-label image
classification scenarios.

VII. CONCLUSION

The study showed that there are significant benefits of
using autoencoders in image processing projects, specifically
medical projects. This is due to the fact that speed is usually
the most critical part of a medical issue, and decreasing
the workflow of the machine learning models without losing
accuracy can save many people’s lives. Since both the accuracy
and the timing is achieved better using autoencoders, the
conclusion can be considered successful.

ACKNOWLEDGEMENTS

Best regards to dear Prof. Alpaydın and Mahir Atmış for
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APPENDIX

Appendix 1 - Data distribution of the train and test datasets by percentages
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(a) Train Set
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Appendix 2 - Model training history of the normal image inputs

Appendix 3 - Model training history of the autoencoded image inputs



Appendix 4 - Autoencoder model’s input & corresponding output examples
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